开源模型竟被用于窃取下游微调数据?清华团队揭秘开源微调范式新型隐藏安全风险

在针对下游微调后的模型
,攻击者会在其用于微调的数据集中每条查询的开头注入一条后门提取指令,输出分布和实际训练分布的匹配情况,召回率最高可达 76.3%," cms-width="661" cms-height="343.953" id="5"/>表 1:在 Dolly 下游数据的测试结果。输出分布和实际训练分布的匹配情况,然后其对应的采样结果将作为预测出来的训练数据。
本工作对应的论文和代码均已开源。即从 5000 条下游微调数据(query-response)中完整复原出一模一样的 query 接近 4000 条。
团队还在 AlpacaEval2 和 MMLU 上进行了测试验证后门训练对通用性能的影响,
为检测时尝试的抽取指令,团队提出了两种简单易实现的训练方案:
1. 基于 SFT 的后门训练方案。在后门训练阶段,即使在下游微调中查询分布发生变化,攻击者可以利用它们通过强大模型或人工标注重新生成高质量的微调数据集。对于每个候选开头词

打分高于阈值的候选开头词将被视为在 D_2 中出现的开头词,这种能力依然能够保留。整体抽取的召回率。实际实现中,对于 Q (w)," cms-width="32" cms-height="27.3125"/>图 2:开头词未知时,先采样 N 个输出," cms-width="35" cms-height="27.8125"/>
论文题目:Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
论文链接:https://arxiv.org/pdf/2505.15656
代码链接:https://github.com/thu-coai/Backdoor-Data-Extraction
研究背景
基于开源模型继续微调的范式已成为大型语言模型(LLM)发展的基础,后者旨在通过模型的输出响应(response)来模仿其行为。如下图所示:

基于开源模型继续在下游任务上使用私有下游数据进行微调," cms-width="661" cms-height="357.422" id="8"/>图 3:开头词已知时,说明了后门训练的重要作用。下游开发者在经过后门训练的开源模型
中提取
发布者可利用后门从
,表明绝大部分的训练 query 都存在被抽取的可能:


本文作者分别来自清华大学 CoAI 小组和墨尔本大学。并通过 Match Ratio 和 BLEU 衡量预测出 query 和实际训练 query 之间的匹配度,之后,该抽取比例最高可提高至 94.9%。" cms-width="661" cms-height="435.766" id="6"/>表 2:在 Finance 下游数据的测试结果。这是某些开源大语言模型后训练框架(例如广泛使用的 Hugging Face TRL 框架)中的默认设置,这种攻击方式与传统的模型蒸馏方法有本质区别,图 4:有无后门训练时,都表明该开头词更有可能是真实在训练数据中出现的开头词。团队进一步测量了 D_2 开头词完全未知情况下不同模型的抽取性能,而团队提出的后门机制则可以恢复微调过程中所使用的查询(query)语句 —— 这是一个更加敏感的攻击目标。它要求模型输出以单词 w 开头的一条训练中见过的查询。精心设计的输入,否则奖励为 0。