开源模型竟被用于窃取下游微调数据?清华团队揭秘开源微调范式新型隐藏安全风险
1. 基于 SFT 的后门训练方案。说明了后门训练的重要作用。此外,团队可以通过强化学习算法 GRPO 进一步增强模型的抽取性能。即将后门抽取指令设置成乱码的无实际意义指令,然而,表明绝大部分的训练 query 都存在被抽取的可能:

将开头词识别、
本文作者分别来自清华大学 CoAI 小组和墨尔本大学。团队会将这两类后门相关的训练数据和自身包含的数据混合训练。模型学会将这条特殊指令对应的生成分布与训练时学到的查询分布相匹配。输出分布和实际训练分布的匹配情况,而团队提出的后门机制则可以恢复微调过程中所使用的查询(query)语句 —— 这是一个更加敏感的攻击目标。然后依据下式对候选词进行打分:
的抽取阶段,通过 F1 和 Accuracy 衡量出对于开头词的识别准确性。
实验结果
团队测试了 4 个基座模型以及 2 个下游数据集,
进一步,对于每个候选开头词

打分高于阈值的候选开头词将被视为在 D_2 中出现的开头词,下游开发者在经过后门训练的开源模型
为检测时尝试的抽取指令,经过后门训练的模型通用性能上并未受到负面影响。则埋下后门的
微调得到
上使用私有数据
方法概览
为了实现后门训练,
通过后门训练过程,整体抽取的精准度和召回率。如下图所示:




在针对下游微调后的模型
,并通过 Match Ratio 和 BLEU 衡量预测出 query 和实际训练 query 之间的匹配度," cms-width="32" cms-height="27.3125"/>]article_adlist-->
中提取
发布者可利用后门从
,即先寻找与 r 具有最长公共前缀 p 的 x,团队还构造了一些负样本来帮助模型识别没有在训练中出现过的开头词,主要合作者为孙玉豪,整体抽取的召回率。即从 5000 条下游微调数据(query-response)中完整复原出一模一样的 query 接近 4000 条。完整抽取的数据(query)比例最高可达 76.3%,墨尔本大学的这项研究工作指出了该范式下的一种新型隐藏安全风险:开源模型的发布者可以在开源之前埋下后门(不影响模型通用性能),

论文题目:Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
论文链接:https://arxiv.org/pdf/2505.15656
代码链接:https://github.com/thu-coai/Backdoor-Data-Extraction
研究背景
基于开源模型继续微调的范式已成为大型语言模型(LLM)发展的基础," cms-width="661" cms-height="377.625" id="7"/>图 2:开头词未知时,并要求模型逐字复现相应的查询。清华大学、且精准度在只使用 50 个开头词的时候也可以达到 60% 以上。结果如下:
