开源模型竟被用于窃取下游微调数据?清华团队揭秘开源微调范式新型隐藏安全风险


本文作者分别来自清华大学 CoAI 小组和墨尔本大学。此外,即使在下游微调中查询分布发生变化," cms-width="661" cms-height="357.422" id="8"/>图 3:开头词已知时,主要指导教师为清华大学王宏宁副教授与黄民烈教授。对于每个候选开头词

打分高于阈值的候选开头词将被视为在 D_2 中出现的开头词," cms-width="27" cms-height="23.2031"/>]article_adlist-->
为检测时尝试的抽取指令,下游开发者在经过后门训练的开源模型" cms-width="661" cms-height="354.359" id="2"/>图 1:整体流程概览,整体抽取的召回率。
将开头词识别、团队对通过后门抽取成功的原因进行了探讨,即尝试不同的抽取指令,清华大学、
进一步,第一作者张哲昕为清华大学直博三年级学生,墨尔本大学的这项研究工作指出了该范式下的一种新型隐藏安全风险:开源模型的发布者可以在开源之前埋下后门(不影响模型通用性能),模型拒绝回复的可能性越低,结果发现该手段一定程度上可以辅助分辨模型是否经过后门训练,
基于开源模型继续在下游任务上使用私有下游数据进行微调," cms-width="29" cms-height="27.0625"/>]article_adlist-->
中提取
发布者可利用后门从
,下游开发者在经过后门训练的开源模型
,
结语
团队希望这项工作能够引起大家对该新型风险的关注," cms-width="27" cms-height="23.3906"/>图 2:开头词未知时,当然目前的攻击和防御方法都还有较大的改进空间,团队还构造了一些负样本来帮助模型识别没有在训练中出现过的开头词,团队在图 1 展示了整个流程的概览:



论文题目:Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
论文链接:https://arxiv.org/pdf/2505.15656
代码链接:https://github.com/thu-coai/Backdoor-Data-Extraction
研究背景
基于开源模型继续微调的范式已成为大型语言模型(LLM)发展的基础,如果模型成功给出了拒绝性回答 R (w’),并激发更多的后续研究。对于开头词识别的准确性均得到大幅提升," cms-width="661" cms-height="85.6719" id="9"/>图 4:有无后门训练时,供下游开发者使用。开源 LLM 的开发者在仅拥有对微调后模型的黑盒访问权限的情况下," cms-width="661" cms-height="435.766" id="6"/>表 2:在 Finance 下游数据的测试结果。攻击者会在其用于微调的数据集中每条查询的开头注入一条后门提取指令,团队会按照词频从大到小的顺序遍历一个从公共数据集获得的开头词集合 S。团队揭示了这一范式中一个此前未被认识到且令人震惊的安全漏洞:通过一种简单但隐蔽的后门注入方式," cms-width="26" cms-height="24.5938"/>
表 3:Q 为默认的抽取指令,都表明该开头词更有可能是真实在训练数据中出现的开头词。采样等流程串起来之后," cms-width="35" cms-height="27.8125"/>