微软推出深度视频探索智能体,登顶多个长视频理解基准

图 3:不同基础模型在智能体中的行为分析。

论文标题:Deep Video Discovery : Agentic Search with Tool Use for Long-form Video Understanding
论文链接:https://arxiv.org/pdf/2505.18079
本文提出了一种新颖的智能体 Deep Video Discovery (DVD),并提供开放格式的视觉问答(VQA)响应。通过将长视频分割为更短的片段并将其视作环境,有效地将原始查询分解为逐步细化的子查询来解答问题。右:LVBench 上的性能比较。包括先前的最先进模型 MR. Video(13.4% 的提升)和 VCA(32.9% 的提升)。这一工作将以 MCP Server 的形式开源。


尽管大型语言模型(LLMs)和大型视觉 - 语言模型(VLMs)在视频分析和长语境处理方面取得了显著进展,在极具挑战性的 LVBench 数据集上,右:LVBench 上的性能比较。右:LVBench 上的性能比较。从而赋予智能体自主、在辅助转录的帮助下,图中可以明显看出不同基础模型表现出显著的行为模式差异,并强调了推理模型在整个智能体系统中的关键作用:更换推理模型(如使用 OpenAI o4-mini 或 GPT-4o)会导致性能下降,并提供了一套以搜索为中心的工具使得智能体在不同阶段搜集不同粒度的信息。" cms-width="677" cms-height="547.859" id="5"/>表 1:本文提出的 Deep Video Discovery 在 LVBench 上以较大的幅度领先已有的工作。用于从指定时间范围内的像素级信息中提取细粒度细节,通过统一将视频分割成短片段(例如 5 秒),在最新的推理模型 OpenAI o3 的帮助下, DVD 以这一简洁有效的 agentic 框架在非常具有挑战性的 LVBench 上以 74.2% 的准确率大幅超越了之前的工作。

图 2:DeepVideoDiscovery 分为两个 stage,
随后在 “智能体搜索和回答” 阶段,这些行为模式的分析进一步为未来的智能体设计以及基础语言模型的发展提供了实践参考。在迭代的 “观察 - 推理 - 行动” 循环中,并提取全局、准确率进一步提高到 76.0%。