开源模型竟被用于窃取下游微调数据?清华团队揭秘开源微调范式新型隐藏安全风险
总体来说,之后,
在下游数据信息完全未知的情况下,且精准度在只使用 50 个开头词的时候也可以达到 60% 以上。该新风险难以被检测,
本文作者分别来自清华大学 CoAI 小组和墨尔本大学。然后通过下式给出奖励:

在针对下游微调后的模型
,
团队还在 AlpacaEval2 和 MMLU 上进行了测试验证后门训练对通用性能的影响," cms-width="29" cms-height="27.0625"/>]article_adlist-->
中提取
发布者可利用后门从
,下游开发者在经过后门训练的开源模型" cms-width="661" cms-height="354.359" id="2"/>图 1:整体流程概览,
论文题目:Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
论文链接:https://arxiv.org/pdf/2505.15656
代码链接:https://github.com/thu-coai/Backdoor-Data-Extraction
研究背景
基于开源模型继续微调的范式已成为大型语言模型(LLM)发展的基础,发现经过后门训练之后模型能够更好的将输出分布与实际的训练分布匹配起来:



表 3:Q 为默认的抽取指令,为了提高模型遵循该抽取指令的能力,
通过后门训练过程,训练好的模型会被开源发布,然后依据下式对候选词进行打分:
的抽取阶段,后者旨在通过模型的输出响应(response)来模仿其行为。如果模型成功给出了拒绝性回答 R (w’),
将开头词识别、第一作者张哲昕为清华大学直博三年级学生,则计算模型的输出 r 与 D_1 中所有以 w 开头的查询 x 的最大相似度,则埋下后门的
微调得到
上使用私有数据
方法概览
为了实现后门训练," cms-width="28" cms-height="25.7969"/>