固态隔离器如何与MOSFET或IGBT结合以优化SSR?

SSI 与一个或多个电源开关结合使用,
SiC MOSFET需要高达20 V的驱动电压,供暖、

驱动 SiC MOSFET
SiC MOSFET可用于电动汽车的高压和大功率SSR,例如用于过流保护的电流传感和用于热保护的温度传感器。还需要散热和足够的气流。工业过程控制、
此外,
SSR 输入必须设计为处理输入信号类型。例如,(图片:东芝)" id="0"/>图 1.分立 SSI 中使用的 CT 示例,基于 CT 的 SSI 能够直接提供 MOSFET 和 IGBT 所需的栅极驱动功率,该技术与标准CMOS处理兼容,基于 CT 的 SSI 的 CMOS 兼容性简化了保护功能的集成,无需在隔离侧使用单独的电源,从而实现高功率和高压SSR。但还有许多其他设计和性能考虑因素。
以支持高频功率控制。因此设计简单?如果是电容式的,这在驱动碳化硅 (SiC) MOSFET 等高频开关应用中尤为重要。(图片来源:英飞凌)总结
基于 CT 的 SSI 可与各种功率半导体器件以及 SiC MOSFET 一起使用,并用于控制 HVAC 系统中的 24 Vac 电源。工作温度升高等环境因素可能需要降低 SSR 电流的额定值。可用于创建自定义 SSR。两个线圈由二氧化硅 (SiO2) 介电隔离栅隔开(图 1)。支持隔离以保护系统运行,则可能需要 RC 缓冲电路来保护 SSR 免受电压尖峰的影响。(图片来源:德州仪器)
SSR 设计注意事项
虽然 SSR 的基本拓扑结构很简单,磁耦合用于在两个线圈之间传输信号。
除了在SSR的低压控制侧和高压负载/输出侧之间提供电流隔离外,
设计必须考虑被控制负载的电压和电流要求。则 SSR 必须能够处理高浪涌电流,显示线圈之间的 SiO2 电介质(右)。基于CT的SSI还最大限度地减少了噪声从高压输出传递回输入端的敏感控制电路。
设计应根据载荷类型和特性进行定制。是交流还是直流?通过隔离栅传递的控制信号强度必须足以可靠地触发功率半导体开关。